

Data Structures (LOCF)
B.Sc(H) Computer Science
Updated proposed Guidelines

05.10.20

Unit 1
Arrays

Syllabus Guidelines Suggested number of lectures

1

12
2 Applications of arrays to sorting: selection sort, insertion sort, bubble sort,

comparison of sorting techniques via empirical studies.
Chapter 9, Section 9.1.1—9.1.3,

Ref 1

3 Introduction to Vectors Chapter 6 Section 6.1, Ref 2

Single and multi- dimensional arrays, analysis of insert, delete and search
operations in arrays (both linear search and binary search), Implementing sparse
matrices

 Additional Resource 3

 Chapter 7, Section 7.1, 7.2, 7.3,
Section 7.4 upto page number
 253.

Unit 2
Linked Lists

Syllabus Guidelines Suggested number of lectures

1
Singly- linked, doubly-linked and circular lists, analysis of insert, delete
and search operations in all the three types Chapter 3, Section 3.2, 3.3, 3.4, Ref 2

123 implementing sparse matrices.

4 Introduction to Sequences. Chapter 6, Section 6.3, Ref 2

Chapter 7, Section 7.4 upto
page number 253

Additional Resource 3

Unit 3
Queues

Syllabus Guidelines Suggested number of lectures

1
Array and linked representation of queue, deque
comparison of the operations on queues in the two
representations

Chapter 5, Section 5.2, 5.3 (upto 5.3.3) Ref 2

6

3 Applications of queues. Chapter 6, Section 6.4.1, Ref 1

Unit 4
Stacks

Syllabus Guidelines Suggested number of lectures

1
Array and linked representation of stacks, comparison of the operations
on stacks in the two representations, implementing multiple stacks in an
array

Chapter 5, Section 5.1.1- 5.1.5, Ref 2

84
Applications of stacks: prefix, infix and postfix expressions, utility and
conversion of these expressions from one to another

Chapter 2, Section 2.3 (upto page no. 106)
Additional resource 4

5
Applications of stacks to recursion: developing recursive solutions to
simple problems, advantages and limitations of recursion

Chapter 5, Section 5.1 - 5.7 (snowflake
example in section 5.5 not to be discussed),

6.4.2(non-recursive Depth first traversal)
ref 1

Unit 5
Trees and Heaps

Syllabus Guidelines Suggested number of lectures

1
Introduction to tree as a data structure, binary trees, binary search trees, analysis of
insert, delete, search operations, recursive and iterative traversals on binary search
trees

142
Height-balanced trees (AVL), B trees, analysis of insert, delete, search operations on
AVL and B trees

3

Introduction to heap as a data structure. analysis of insert, extract-min/max and
delete-min/max operations, applications to priority queues Chapter 8, Section 8.1.1, 8.1.3,

8.3.1-8.3.4 Ref 2

Chapter 6, Section
6.7.2, Chapter 7,

Section 7.1.1
Ref 1

Additional resource 4

Chapter 6, Section 6.1 - 6.6
(threaded trees not to be
done.) Ref 1, Chapter 5,

Section 5.1,

Manisha Bansal

Unit 6
Hash Tables

Syllabus Guidelines Suggested number of lectures

1
Introduction to hashing, hash tables and hashing functions,
insertion, resolving collision by open addressing, deletion,
searching and their analysis, properties of a good hash function.

Chapter 10, Section 10.1 - 10.4, Ref 1 4

References

2. Ref 2.: Goodrich, M., Tamassia, R., & Mount, D., (2011). Data Structures and Algorithms Analysis in C+
+. 2nd edition. Wiley.

3. Additional Resource 3: Sahni, S. (2011). Data Structures, Algorithms and applications in C++. 2ndEdition,
Universities Press

4. Additional Resource 4: Tenenbaum, A. M., Augenstein, M. J., & Langsam Y., (2009), Data Structures
Using C and C++. 2nd edition. PHI.

Note: Ref1, Additional resource etc. as per the LOCF syllabus for the paper.

1. Ref 1: . Drozdek, A., (2012), Data Structures and algorithm in C++. 4th edition. Cengage Learning.

B.Sc.(H) Computer Science
Semester III

Lab based on Data Structures(LOCF)
List of Practicals* :

1. Given a list of N elements, which follows no particular arrangement, you are required to search an
element x in the list. The list is stored using array data structure. If the search is successful, the output
should be the index at which the element occurs, otherwise returns -1 to indicate that the element is
not present in the list. Assume that the elements of the list are all distinct. Write a program to perform
the desired task.

2. Given a list of N elements, which is sorted in ascending order, you are required to search an element x
in the list. The list is stored using array data structure. If the search is successful, the output should be
the index at which the element occurs, otherwise returns -1 to indicate that the element is not present
in the list. Assume that the elements of the list are all distinct. Write a program to perform the desired
task.

3. Write a program to implement singly linked list which supports the following operations:
(i) Insert an element x at the beginning of the singly linked list
(ii) Insert an element x at position in the singly linked list
(iii) Remove an element from the beginning of the singly linked list
(iv) Remove an element from position in the singly linked list.
(v) Search for an element x in the singly linked list and return its pointer
(vi) Concatenate two singly linked lists

4. Write a program to implement doubly linked list which supports the following operations:
(i) Insert an element x at the beginning of the doubly linked list
(ii) Insert an element x at position in the doubly linked list
(iii) Insert an element x at the end of the doubly linked list
(iv) Remove an element from the beginning of the doubly linked list
(v) Remove an element from position in the doubly linked list.
(vi) Remove an element from the end of the doubly linked list
(vii) Search for an element x in the doubly linked list and return its pointer
(viii) Concatenate two doubly linked lists

5. Write a program to implement circularly linked list which supports the following operations:
(i) Insert an element x at the front of the circularly linked list
(ii) Insert an element x after an element y in the circularly linked list
(iii) Insert an element x at the back of the circularly linked list
(iv) Remove an element from the back of the circularly linked list
(v) Remove an element from the front of the circularly linked list
(vi) remove the element x from the circularly linked list
(vii)Search for an element x in the circularly linked list and return its pointer
(viii) Concatenate two circularly linked lists

6. Implement a stack using Array representation

7. Implement a stack using Linked representation

8. Implement Queue using Circular Array representation

ith

ith

ith

ith

9. Implement Queue using Circular linked list representation

10. Implement Double-ended Queues using Linked list representation

11. Write a program to implement Binary Search Tree which supports the following operations:

(i) Insert an element x

(ii) Delete an element x

(iii) Search for an element x in the BST and change its value to y and then place the node with
value y at its appropriate position in the BST

(iv) Display the elements of the BST in preorder, inorder, and postorder traversal

(v) Display the elements of the BST in level-by-level traversal

(vi) Display the height of the BST

* Programs related to the other data structures in the syllabus will be added soon to the list.

	Guidelines Data Structures051020
	Partial Data Structures Practicals List
	B.Sc.(H) Computer Science
	List of Practicals* :

